INDIAN SCHOOL MUSCAT

NAME OF THE	SECOND PERIODIC TEST	CLASS: XII
EXAMINATION		
DATE OF EXAMINATION	29.05.2022	SUBJECT: PHYSICS
TYPE- SET A	MARKING SCHEME	

SET	Q.NO	VALUE POINTS	
A 1		At the point of intersection, there will be two different directions of electric	
		field OR two values of potential which is not possible	
	2	Yes electric potential is zero at all points on equatorial line of electric dipole, while electric field strength is not zero.	1+1
	3	$V = 6 \frac{kq}{r}$	1/2
		$= 6 \times 9 \times \frac{10^{9} \times 6 \times 10^{-6}}{0.1}$	1/2
		$= 6 \times 9 \times {0.1}$ $= 324 \times 10^{4} \text{ V}$	1
	4	Definition – equipotential surface	1
		Diagram of equipotential surfaces corresponding to	
		(i)a constant electric field in the x- direction.	1
		(ii)a field that uniformly increases in magnitude in the x-direction.	1
		Note- If direction of electric field is not mentioned in the diagram-	
		deduct ½ marks	
	5	If r = 1m, calculated - Give ½ marks	
		$V = V_A + V_B + V_C + V_D$ (Substitution and calculation)	
		$= 2.7 \times 10^{4} \text{ V}$	1+1
		Note- If r = 1m, calculated – Give ½ marks	1
6	6	Gauss's theorem of electrostatics statement	1
		Note -If only formula given- give ½ marks	
		expression for the electric field due to a uniformly charged spherical	
		shell.	
		Introduction and Diagram	1
		Derivation	1
	7	(1) c) Scalar quantity	1
		$(2) (c) \frac{q}{6\varepsilon_0}$	1
			1
		(3) (d) E_0^{-1}	1
		(4) (b) zero	1
		(5) (a) $0.1 N m^2 C^{-1}$	